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Abstract Inspired by [Qiu, Wilson 2019] and [D’Adderio, Iraci, Vanden Wyngaerd 2019 - Delta Square], we
formulate a generalised Delta square conjecture (valley version). Furthermore, we use similar techniques as
in [Haglund, Sergel 2019] to obtain a schedule formula for the combinatorics of our conjecture. We then use
this formula to prove that the (generalised) valley version of the Delta conjecture implies our (generalised)
valley version of the Delta square conjecture. This implication broadens the argument in [Sergel 2016],
relying on the formulation of the touching version in terms of the Θf operators introduced in [D’Adderio,
Iraci, Vanden Wyngaerd 2019 - Theta Operators].
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1 Introduction

In [13], Haglund, Remmel and Wilson conjectured a combinatorial formula for ∆′en−k−1
en in terms of

decorated labelled Dyck paths, which they called Delta conjecture after the so called Delta operators ∆′f
introduced by Bergeron, Garsia, Haiman, and Tesler [2] for any symmetric function f . There are two
versions of the conjecture, referred to as the rise and the valley version.

In the same article [13] the authors conjecture a combinatorial formula for the more general expression
∆hm∆

′
en−k−1

en in terms of decorated partially labelled Dyck paths, which we call generalised Delta conjec-
ture (rise version). In this paper, the authors also state a touching refinement (where the number of times
the Dyck path returns to the main diagonal is specified) of their conjecture. In [9], the authors introduce
the Θf operators, and reformulate the touching version using these tools. In the present work, we will be
using the latter formulation.

The Delta conjecture and its derivatives have attracted considerable attention since their formulation,
see among others [5–8,10,14,15,20–22,24–26]. Most of the earlier work concerns the rise version, but interest
in the valley version is growing.

The special case k = 0 of the Delta conjecture, which is known as the shuffle conjecture [12], was
recently proved by Carlsson and Mellit [4]. The shuffle theorem, thanks to the famous n! conjecture, now n!
theorem of Haiman [16], gives a combinatorial formula for the Frobenius characteristic of the Sn-module
of diagonal harmonics studied by Garsia and Haiman.

In [18] Loehr and Warrington conjecture a combinatorial formula for ∆enω(pn) = ∇ω(pn) in terms of
labelled square paths (ending east), called the square conjecture. The special case 〈·, en〉 of this conjecture,
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known as the q, t-square, was proved by Can and Loehr in [3]. Recently Sergel [23] proved the full square
conjecture, by showing that the shuffle theorem by Carlsson and Mellit [4] implies the square conjecture
(now square theorem).

In [6] the authors conjecture a combinatorial formula for [n−k]t
[n]t

∆hm∆en−kω(pn) in terms of rise-
decorated partially labelled square paths that we call generalised Delta square conjecture (rise version).
This conjecture extends the square conjecture of Loehr and Warrington [18] (now a theorem [23]), i.e. it
reduces to that one for m = k = 0. Moreover, it extends the generalised Delta conjecture in the sense that
on decorated partially labelled Dyck paths the combinatorial statistics coincide.

In [20], the authors state a generalised Delta conjecture (valley version), extending the valley version of
the Delta conjecture. They also prove the case q = 0, extending the results in [7].

Inspired by [20] and [6], we formulate two statements that can reasonably be called the generalised Delta
square conjecture (valley version). One is a combinatorial interpretation of the symmetric function

[n− k]q
[n]q

∆hm∆en−kω(pn) =
[n]t

[n− k]t
∆hmΘek∇ω(pn−k)

(notice the swapping of q and t with respect to the rise version). The other is an interpretation of
∆hmΘek∇ω(pn−k), for which the combinatorics seems to be more natural and does not have the mul-
tiplicative factor.

Next, we adapt the schedule formula in [15] to objects with repeated labels, which enabled us to incorpo-
rate the monomials into the formula. This allowed us to obtain a schedule formula for the combinatorics of
our conjecture and to deal with the symmetric functions more easily. As a byproduct, our formula provides
a new factorisation of all other previous schedule formulae concerning Dyck or square paths.

Finally, we use this formula to prove that the (generalised) valley version of the Delta conjecture implies
our (generalised) valley version of the Delta square conjecture. This implication broadens the argument in
[23], relying on the formulation of the touching version in terms of the Θf operators.

In [9], the authors proved the case k = 0 of the generalised Delta conjecture and so the implication
establishes the case k = 0 of the generalised square conjecture.

2 Combinatorial definitions

Definition 1 A square path of size n is a lattice path going from (0, 0) to (n, n) consisting of east or north
unit steps, always ending with an east step. The set of such paths is denoted by SQ(n). The shift of a square
path is the maximum value s such that the path intersect the line y = x− s in at least one point. We refer
to the line y = x + i as i-th diagonal of the path and to the line x = y, (the 0-th diagonal) as the main
diagonal. A vertical step whose starting point lies on the i-th diagonal is said to be at height i. A Dyck
path is a square path whose shift is 0. The set of Dyck paths is denoted by D(n). Of course D(n) ⊆ SQ(n).

For example, the path in Figure 1 has shift 3.
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Fig. 1: Example of an element in LSQ(8).
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Definition 2 Let π be a square path of size n. We define its area word to be the sequence of integers
a(π) = (a1(π), a2(π), · · · , an(π)) such that the i-th vertical step of the path starts from the diagonal
y = x+ ai(π). For example the path in Figure 1 has area word (0, −3, −3, −2, −2, −1, 0, 0).

Definition 3 A partial labelling of a square path π of size n is an element w ∈ Nn such that

– if ai(π) > ai−1(π), then wi > wi−1,
– a1(π) = 0 =⇒ w1 > 0,
– there exists an index i such that ai(π) = −shift(π) and wi(π) > 0,

i.e. if we label the i-th vertical step of π with wi, then the labels appearing in each column of π are strictly
increasing from bottom to top, with the additional restrictions that, if the path starts north then the first
label cannot be a 0, and that there is at least one positive label lying on the base diagonal.

We omit the word partial if the labelling is composed of strictly positive labels only.

Definition 4 A (partially) labelled square path (resp. Dyck path) is a pair (π,w) where π is a square path
(resp. Dyck path) and w is a (partial) labelling of π. We denote by LSQ(m,n) (resp. LD(m,n)) the set of
labelled square paths (resp. Dyck paths) of size m + n with exactly n positive labels, and thus exactly m
labels equal to 0.

The following definitions will be useful later on.

Definition 5 Let w be a labelling of square path of size n. We define xw :=
∏n
i=1 xwi |x0=1.

The fact that we set x0 = 1 explains the use of the expression partially labelled, as the labels equal to 0
do not contribute to the monomial.

Sometimes we will, with an abuse of notation, write π as a shorthand for a labelled path (π,w). In that
case, we use the identification xπ := xw.

Now we want to extend our sets introducing some decorations.

Definition 6 The contractible valleys of a labelled square path π are the indices 1 ≤ i ≤ n such that one
of the following holds:

– i = 1 and either a1(π) < −1, or a1(π) = −1 and w1 > 0,
– i > 1 and ai(π) < ai−1(π),
– i > 1 and ai(π) = ai−1(π) ∧ wi > wi−1.

We define
v(π,w) := {1 ≤ i ≤ n | i is a contractible valley},

corresponding to the set of vertical steps that are directly preceded by a horizontal step and, if we were
to remove that horizontal step and move it after the vertical step, we would still get a square path with
a valid labelling. In particular, if the vertical step is in the first row and it is attached to a 0 label, then
we require that it is preceded by at least two horizontal steps (as otherwise by removing it we get a path
starting north with a 0 label in the first row).

Remark 1 These slightly contrived conditions on the steps labelled 0 have a more natural formulation in
terms of steps labelled ∞, see Section 7.

This extends the definition of contractible valley given in [13] to (partially) labelled square paths.

Definition 7 The rises of a (labelled) square path π are the indices

r(π) := {2 ≤ i ≤ n | ai(π) > ai−1(π)},

i.e. the vertical steps that are directly preceded by another vertical step.

Definition 8 A valley-decorated (partially) labelled square path is a triple (π,w, dv) where (π,w) is a
(partially) labelled square path and dv ⊆ v(π,w). A rise-decorated (partially) labelled square path is a triple
(π,w, dr) where (π,w) is a (partially) labelled square path and dr ⊆ r(π).
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Again, we will often write π as a shorthand for the corresponding triple (π,w, dv) or (π,w, dr).
We denote by LSQ(m,n)•k (resp. LSQ(m,n)∗k) the set of partially labelled valley-decorated (resp. rise-

decorated) square paths of size m + n with n positive labels and k decorated contractible valleys (resp.
decorated rises). We denote by LD(m,n)•k (resp. LD(m,n)∗k) the corresponding subsets of Dyck paths.

We also define LSQ′(m,n)•k as the set of paths in LSQ(m,n)•k such that there exists an index i such that
ai(π) = −shift(π) and i 6∈ dv ∧ wi(π) > 0, i.e. there is at least one positive label lying on the bottom-most
diagonal that is not a decorated valley. The importance of this set will be evident later in the paper.

Finally, we sometimes omit writing m or k when they are equal to 0. Notice that, because of the
restrictions we have on the labelling and the decorations, the only path with n = 0 is the empty path, for
which also m = 0 and k = 0.
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Fig. 2: Example of an element in LSQ(2, 6)•2 (left) and an element in LSQ(2, 6)∗2 (right).

We define two statistics on this set that reduce to the ones defined in [18] when m = 0 and k = 0.

Definition 9 Let (π,w, dr) ∈ LSQ(m,n)∗k and s be its shift. We define

area(π,w, dr) :=
∑
i6∈dr

(ai(π) + s),

i.e. the number of whole squares between the path and the base diagonal that are not in rows containing a
decorated rise.

For (π,w, dv) ∈ LSQ(m,n)•k, we define area(π,w, dv) := area(π,w,∅), where (π,w,∅) ∈ LSQ(m,n)∗0.

For example, the paths in Figure 2 have area 13 (left) and 10 (right). Notice that the area does not
depend on the labelling.

Definition 10 Let (π,w, dv) ∈ LSQ(m,n)•k. For 1 ≤ i < j ≤ n, the pair (i, j) is a diagonal inversion if

– either ai(π) = aj(π) and wi < wj (primary inversion),
– or ai(π) = aj(π) + 1 and wi > wj (secondary inversion),

where wi denotes the i-th letter of w, i.e. the label of the vertical step in the i-th row. Then we define

dinv(π) := #{1 ≤ i < j ≤ n | (i, j) inversion ∧ i 6∈ dv}+#{1 ≤ i ≤ n | ai(π) < 0 ∧ wi > 0} −#dv

where again π is a shorthand for (π,w, dv).
For (π,w, dr) ∈ LSQ(m,n)∗k, we define dinv(π,w, dr) := dinv(π,w,∅) where π,w,∅) ∈ LSQ(m,n)•0.

We refer to the middle term, counting the non-zero labels below the main diagonal, as bonus or tertiary
dinv.

For example, the path in Figure 2 (left) has dinv equal to 4: 2 primary inversions in which the leftmost
label is not a decorated valley, i.e. (1, 7) and (1, 8); 1 secondary inversion in which the leftmost label is not
a decorated valley, i.e. (1, 6); 3 bonus dinv, coming from the rows 3, 4, and 6; 2 decorated valleys.

It is not immediately obvious why the dinv of a valley-decorated path is always non-negative.

Proposition 1 For all π ∈ LSQ(m,n)•k, dinv(π) ≥ 0.
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Fig. 3: Dinv is non-negative.

Proof We will show that each decorated valley of π implies at least one unit of primary, secondary or bonus
dinv, that compensates the negative contribution of the valley itself.

Consider a decorated valley at height i. By definition, it is preceded by a horizontal step. For the
remainder of the proof, “decorated valley” will refer to the decorated vertical step and the horizontal step
that precedes it.

Step 0. Suppose the valley is part of a string of decorated valleys, labelled As, . . . , A1 from left to right,
see Figure 3a. Since the valleys are contractible we must have As < · · · < A1. This string is then directly
preceded either by a vertical step that is not a decorated valley (as otherwise this would be part of the
string), or by a horizontal step.

Step 1. If the string is preceded by a vertical step, then this step’s label, say B, must be such that
B < As < · · · < A1 since the step labelled by As is a contractible valley, see Figure 3b. Thus, the step
labelled B creates primary dinv with each of the decorated valleys in the string following it.

Step 2. If the string is preceded by a horizontal step, consider two subcases.
Step 2.1. First suppose that the valley labelled As is preceded by a leftmost vertical step at height

i that is not a decorated valley (which is always true for i ≥ 0). This implies that the step labelled As
must be preceded at some point by two consecutive vertical steps, at height i and i+ 1, labelled C and B
respectively, see Figure 3c. For all j, if B > Aj , then the step labelled B creates secondary dinv with the
step labelled Aj . If B ≤ Aj then C < Aj .

Step 2.1.1. If the step labelled C is not a decorated valley then it creates primary dinv with the step
labelled Aj , for all j.

Step 2.1.2. If, however the step labelled C is a decorated valley, rename its label As+1 and consider
it as part of the “string” of decorated valleys, see Figure 3d. Restart the argument from Step 1 (since the
path is finite, this loop must terminate).

Step 2.2. The step labelled As is not preceded by a vertical step at height i that is not a decorated
valley. This implies that i < 0. Thus, decorated valleys at height i that are not labelled 0 contribute to
the bonus dinv. So we are exclusively concerned with the decorated valleys labelled 0. Decorated valleys
labelled 0 that are not the first step at height i must create secondary dinv with a step to its left: indeed,
they must be preceded by two horizontal steps, otherwise they would not be contractible. Since they are
not the first step at height i, they must be preceded by two consecutive vertical steps, at height i and i+1,
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labelled B and C respectively, as in Figure 3c. Since B labels a rise, it must be positive and therefore must
create secondary dinv with steps labelled 0 to its right.

Thus, we are left with a decorated valley labelled 0 that is the first step at height i. By the definition
of a contractible valley, this implies that i 6= 1. Since the square path must end east, there must be a rise
at height i+ 1 < 0, which cannot be a decorated valley (as it is a rise), and that creates one unit of bonus
dinv that is not compensating for any other decorated valley.

Finally, we recall two classical definitions.

Definition 11 Let p1, . . . , pk be a sequence of integers. We define its descent set

Des(p1, . . . , pk) := {1 ≤ i ≤ k − 1 | pi > pi+1}

and its major index maj(p1, . . . , pk) to be the sum of the elements of the descent set.

3 Symmetric functions

For all the undefined notations and the unproven identities, we refer to [5, Section 1], where definitions,
proofs, and/or references can be found.

We denote by Λ the graded algebra of symmetric functions with coefficients in Q(q, t), and by 〈 , 〉 the
Hall scalar product on Λ, defined by declaring that the Schur functions form an orthonormal basis.

The standard bases of the symmetric functions that will appear in our calculations are the monomial
{mλ}λ, complete homogeneous {hλ}λ, elementary {eλ}λ, power {pλ}λ and Schur {sλ}λ bases.

For a partition µ ` n, we denote by

H̃µ := H̃µ[X] = H̃µ[X; q, t] =
∑
λ`n

K̃λµ(q, t)sλ

the (modified) Macdonald polynomials, where

K̃λµ := K̃λµ(q, t) = Kλµ(q, 1/t)t
n(µ)

are the (modified) Kostka coefficients (see [11, Chapter 2] for more details).
Macdonald polynomials form a basis of the ring of symmetric functions Λ. This is a modification of the

basis introduced by Macdonald [19].
If we identify the partition µ with its Ferrers diagram, i.e. with the collection of cells {(i, j) | 1 ≤ i ≤

µi, 1 ≤ j ≤ `(µ)}, then for each cell c ∈ µ we refer to the arm, leg, co-arm and co-leg (denoted respectively
as aµ(c), lµ(c), aµ(c)′, lµ(c)′) as the number of cells in µ that are strictly to the right, above, to the left and
below c in µ, respectively.

Let M := (1− q)(1− t). For every partition µ, we define the following constants:

Bµ := Bµ(q, t) =
∑
c∈µ

qa
′
µ(c)tl

′
µ(c),

Dµ := Dµ(q, t) =MBµ(q, t)− 1,

Tµ := Tµ(q, t) =
∏
c∈µ

qa
′
µ(c)tl

′
µ(c) = qn(µ

′)tn(µ) = e|µ|[Bµ],

Πµ := Πµ(q, t) =
∏

c∈µ/(1,1)

(1− qa
′
µ(c)tl

′
µ(c)),

wµ := wµ(q, t) =
∏
c∈µ

(qaµ(c) − tlµ(c)+1)(tlµ(c) − qaµ(c)+1).

We will make extensive use of the plethystic notation (cf. [11, Chapter 1]).
We need to introduce several linear operators on Λ.

Definition 12 ([1, 3.11]) We define the linear operator ∇ : Λ → Λ on the eigenbasis of Macdonald poly-
nomials as

∇H̃µ = TµH̃µ.
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Definition 13 We define the linear operator Π : Λ→ Λ on the eigenbasis of Macdonald polynomials as

ΠH̃µ = ΠµH̃µ

where we conventionally set Π∅ := 1.

Definition 14 For f ∈ Λ, we define the linear operators ∆f ,∆′f : Λ → Λ on the eigenbasis of Macdonald
polynomials as

∆f H̃µ = f [Bµ]H̃µ, ∆′f H̃µ = f [Bµ − 1]H̃µ.

Observe that on the vector space of symmetric functions homogeneous of degree n, denoted by Λ(n),
the operator ∇ equals ∆en .

We also introduce the Theta operators, first defined in [9]

Definition 15 For any symmetric function f ∈ Λ(n) we introduce the following Theta operators on Λ: for
every F ∈ Λ(m) we set

ΘfF :=


0 if n ≥ 1 and m = 0
f · F if n = 0 and m = 0
Πf∗Π−1F otherwise

,

and we extend by linearly the definition to any f, F ∈ Λ.

It is clear that Θf is linear, and moreover, if f is homogenous of degree k, then so is Θf , i.e.

ΘfΛ
(n) ⊆ Λ(n+k) for f ∈ Λ(k).

It is convenient to introduce the so called q-notation. In general, a q-analogue of an expression is a
generalisation involving a parameter q that reduces to the original one for q → 1.

Definition 16 For a natural number n ∈ N, we define its q-analogue as

[n]q :=
1− qn

1− q = 1 + q + q2 + · · ·+ qn−1.

Given this definition, one can define the q-factorial and the q-binomial as follows.

Definition 17 We define

[n]q! :=
n∏
k=1

[k]q and

[
n

k

]
q

:=
[n]q!

[k]q![n− k]q!

Definition 18 For x any variable and n ∈ N ∪ {∞}, we define the q-Pochhammer symbol as

(x; q)n :=

n−1∏
k=0

(1− xqk) = (1− x)(1− xq)(1− xq2) · · · (1− xqn−1).

We can now introduce yet another family of symmetric functions.

Definition 19 For 0 ≤ k ≤ n, we define the symmetric function En,k by the expansion

en

[
X

1− z
1− q

]
=

n∑
k=0

(z; q)k
(q; q)k

En,k.

Notice that En,0 = δn,0. Setting z = qj we get

en

[
X

1− qj

1− q

]
=

n∑
k=0

(qj ; q)k
(q; q)k

En,k =
n∑
k=0

[
k + j − 1

k

]
q

En,k

and in particular, for j = 1, we get

en = En,0 + En,1 + En,2 + · · ·+ En,n,

so these symmetric functions split en, in some sense.
We care in particular about the following identity.
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Proposition 2 ([3, Theorem 4]) For n > 0,

ω(pn) =
n∑
k=1

[n]q
[k]q

En,k.

The Theta operators will be useful to restate the Delta conjectures in a new fashion, thanks to the
following results.

Theorem 1 ([9, Theorem 3.1]) For n > 0,

Θek∇en−k = ∆′en−k−1
en.

Theorem 2 ([9, Theorem 3.3]) For n > 0,

[n]q
[n− k]q

Θek∇ω(pn−k) =
[n− k]t
[n]t

∆en−kω(pn).

Corollary 1 For n > 0,
[n]t

[n− k]t
Θek∇ω(pn−k) =

[n− k]q
[n]q

∆en−kω(pn).

4 Delta conjectures

By Delta conjectures we refer to a family of conjectures that provide a combinatorial interpretation of
certain symmetric functions that arise from the Delta operators and show positivity properties.

The first and most famous of the Delta conjectures is known as shuffle conjecture, now a theorem by E.
Carlsson and A. Mellit (see [4]).

Theorem 3 (Shuffle theorem [4, Theorem 7.5])

∇en =
∑

π∈LD(n)

qdinv(π)tarea(π)xπ.

The shuffle theorem is especially important because ∇en has another interpretation, as the bigraded
Frobenius characteristic of the Sn module of the diagonal harmonics. This is one of the facts that first
motivated the study of Macdonald polynomials, and it has been proved by M. Haiman in [17]. See also [16]
for further details.

The Delta conjecture is a generalisation of the shuffle conjecture, introduced by J. Haglund, J. Remmel,
and A. Wilson in [13]. In the same paper, the authors suggest that an even more general conjecture should
hold, which we call generalised Delta conjecture. It reads as follows.

Conjecture 1 ((Generalised) Delta conjecture, valley version [20, Conjecture 1.3])

∆hm∆
′
en−k−1

en =
∑

π∈LD(m,n)•k

qdinv(π)tarea(π)xπ.

Form = 0 this conjecture first appears together with the rise version in [13]. The full statement, together
with a proof of the case q = 0, has been given by D. Qiu and A. Wilson in [20].

Conjecture 2 ((Generalised) Delta conjecture, rise version [13, Conjecture 7.4])

∆hm∆
′
en−k−1

en =
∑

π∈LD(m,n)∗k

qdinv(π)tarea(π)xπ.

The rise version of the Delta conjecture is simply the case m = 0 of the general case.
Recalling that ∇|Λ(n) = ∆′en−1

|Λ(n) , it is clear that for k = 0 both the versions of the Delta conjecture
reduce to the shuffle theorem.

The square conjecture was first suggested by N. Loehr and G. Warrington in [18], and it was then proved
by E. Sergel in [23] using the shuffle theorem.
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Theorem 4 (Square Theorem [23, Theorem 4.11])

∇ω(pn) =
∑

π∈LSQ(n)

qdinv(π)tarea(π)xπ.

Unfortunately, adding zero labels and decorated rises to square paths in the trivial way and q, t-counting
the resulting objects with respect to the bistatistic (dinv, area) gives a polynomial that does not match the
expected symmetric function. This issue has been addressed by M. D’Adderio and the authors, who stated
the generalised Delta square conjecture in [6].

Conjecture 3 ((Generalised) Delta square conjecture, rise version [6, Conjecture 3.12])

[n− k]t
[n]t

∆hm∆en−kω(pn) =
∑

π∈LSQ(m,n)∗k

qdinv(π)tarea(π)xπ.

where the rise version of the square conjecture is simply the case m = 0 of the general case.
The square conjectures used to lack a valley version. Computational evidence suggests the following,

checked by computer up to n = 6.

Conjecture 4 ((Generalised) Delta square conjecture, valley version)

[n− k]q
[n]q

∆hm∆en−kω(pn) =
∑

π∈LSQ(m,n)•k

qdinv(π)tarea(π)xπ.

Notice that the symmetric function we propose for the valley version differs from the one appearing
in the rise version (for m = 0) as the multiplicative factor is the ratio of two q-analogues instead of two
t-analogues. This suggests a potential extension of the conjecture to a version with both decorated rises and
contractible valleys, possibly using the Theta operators appearing in [9]. The power series associated to the
obvious combinatorial extension, however, seems to be quasi-symmetric function which is not symmetric,
and thus further investigation is required to find suitable statistics.

We can restate it in terms of Theta operators as follows.

Conjecture 5 ((Generalised) Delta square conjecture, valley version)

[n]t
[n− k]t

∆hmΘek∇ω(pn−k) =
∑

π∈LSQ(m,n)•k

qdinv(π)tarea(π)xπ.

We need to state a refinement of the Delta conjecture, valley version, that naturally arises when stating
it in terms of Theta operators. But first, we need another combinatorial definition. Let

LSQ(m,n\r)•k := {π ∈ LSQ(m,n)•k | #{i 6∈ dv : ai = −shift(π) ∧ wi > 0} = r},

which is the set of labelled valley-decorated square paths of size m + n with m labels equal to 0 and k
decorations such that there are exactly r steps which are neither 0 labels nor decorated valleys on the
bottom-most diagonal, and let

LD(m,n\r)•k := LSQ(m,n\r)•k ∩ LD(m,n)•k,

which is the subset of corresponding labelled valley-decorated Dyck paths. We state the following.

Conjecture 6 (Touching Delta conjecture, valley version)

Θek∇En−k,r =
∑

π∈LD(n\r)•k
qdinv(π)tarea(π)xπ.

It is immediate that Conjecture 6 implies the case m = 0 of Conjecture 1, as it is enough to sum over
r and then apply Theorem 1.

We need to state the same refinement for the generalised version too.

Conjecture 7 (Generalised touching Delta conjecture, valley version)

∆hmΘek∇En−k,r =
∑

π∈LD(m,n\r)•k
qdinv(π)tarea(π)xπ.

9



Remark 2 In [9, Theorem 7.1], the authors proved the case k = 0 of Conjecture 7: the generalised touching
shuffle theorem.

We now want to state yet another version of the Delta square conjecture, using the set LSQ′(m,n)•k

previously introduced.

Conjecture 8 (Modified Delta square conjecture, valley version)

Θek∇ω(pn−k) =
∑

π∈LSQ′(n)•k
qdinv(π)tarea(π)xπ.

This conjecture is new and it is more nice-looking than the other forms of the Delta square conjecture
as it does not have any multiplicative correcting factor. It also extends nicely to the m > 0 case, as follows.

Conjecture 9 (Modified generalised Delta square conjecture, valley version)

∆hmΘek∇ω(pn−k) =
∑

π∈LSQ′(m,n)•k
qdinv(π)tarea(π)xπ.

Our goal is to show that Conjecture 7 implies Conjecture 9, and as a corollary that Conjecture 6 implies
Conjecture 8.

5 Schedule numbers for repeated labels

Definition 20 Let (π,w, dv) be a valley-decorated labelled square path with shift s. For i ≥ 0 we set ρi
to be the word consisting of the labels appearing in the (i − s)-th diagonal, marked with a • if it labels a
decorated valley, in increasing order, where we consider c <

•
c < c + 1. The diagonal word of (π,w, dv) is

dw(π,w, dv) := ρ` . . . ρ1ρ0.

For such a word z we define maj(z) and xz as usual, ignoring the decorations.

For example the diagonal word of the path in Figure 4 is 1243
•
141
•
1. Notice that the ρi are the runs of

dw(π,w, dv), i.e. the maximal weakly increasing substrings (disregarding decorations).

•

•

2

1

1

4

1

3

4

1

Fig. 4: Square path with diagonal word 1243
•
141
•
1

Remark 3 If w is the diagonal word of some path in LSQ(m,n)•k it is a decorated word with letters in the
alphabet N. For a decorated word w, we define maj(w) and xw to be computed as usual, simply ignoring
the decorations.

Definition 21 Let z := dw(π,w, dv) be the diagonal word of a valley-decorated labelled square path
(π,w, dv) such that z = ρ` · · · ρ0, where the ρi’s are its runs. We define its i-th run multiplicity functions
zi, z

•
i : N→ N, where for any c ∈ N

zi(c) = # of undecorated c’s in ρi
z•i (c) = # of decorated c’s in ρi.

10



Clearly, each function zi has finite support.

Definition 22 Consider π ∈ LSQ(m,n)•k and set dw(π) = ρ` · · · ρ0, where the ρi’s are its runs. For c ∈ N,
we define its schedule numbers wi,s(c) as follows:

wi,s(c) :=


∑
d>c zi(d) +

∑
d<c zi−1(d) if i ∈ {s+ 1, . . . , `}∑

d>c zi(d) + 1− δc,0 if i = s∑
d<c zi(d) +

∑
d>c zi+1(d) if i ∈ {0, . . . , s− 1}

w•i,s(c) :=
∑
d<c

zi(d) +
∑
d>c

zi+1(d)− δc,0δi,s−1.

Theorem 5 Let z = ρ` · · · ρ0 be the diagonal word of a path in LSQ′(m,n)•k so that the ρi are its runs.
Let b(z, s) :=

∑
c>0

(∑
i<s zi(c)

)
+
∑
i<s−1(−z

•
i (0)). Then

∑
π∈LSQ(m,n)•k

shift(π)=s
dw(π)=z

qdinv(π)tarea(π)xπ = tmaj(z)qb(z,s)
∏̀
i=0

∏
c≥0

[
wi,s(c) + zi(c)− 1

zi(c)

]
q

q(
z•i (c)

2 )

[
w•i,s(c)

z•i (c)

]
q

xz.

The proof of this result is similar to the one described by Haglund and Sergel in [15, Theorem 3.2] for
Dyck paths, except that we consider repeated labels. For the sake of completeness, we repeat some of their
arguments here.

Proof Let us begin by noting that since zi(c) = z•i (c) = 0 for all but a finite number of elements of N and
thus all but a finite number of q-binomials of the right hand side are equal to 1, which means that the
product is actually finite.

Next, observe that for any π ∈ LSQ(n)•k with dw(π) = z we trivially have xπ = xz, so we only need to
consider the q, t-enumerators. It is also not difficult to see that for any such path maj(z) = area(π), indeed,

area(π) = ` ·#ρ` + (`− 1) ·#ρ`−1 + · · ·+ 1 ·#ρ1
= ρ` + (ρ` + ρ`−1) + · · ·+ (ρ` + ρ`−1 + · · ·+ ρ1) = maj(z).

This takes care of the factor tmaj(z).
For the dinv, we will construct all the paths of a given diagonal word and shift, starting from the empty

path, all the while keeping track of the dinv. We outline the different steps of the construction. We only
describe the placement of the (decorated) labels in the lattice, as each such placement is the labelling of a
unique square path.

1. For i = s, s + 1, . . . ` insert the zi(c) labels equal to c into the (i − s)-th diagonal, for all c ∈ N, in
decreasing order.

2. For i = s − 1, s − 2, . . . 0 insert the zi(c) labels equal to c into the (i − s)-th diagonal, for all c ∈ N, in
increasing order.

3. For all i insert the z•i (c) decorated labels equal to c into the (i − s)-th diagonal, for all c ∈ N, in
decreasing order (the order of i is unimportant).

In other words in the first step we construct non-decorated Dyck paths, in the second we turn them
into non-decorated square paths and in the third we add decorated labelled steps.

Call a (i, c)-insertion (respectively (i, c)•-insertion) the insertion of zi(c) (respectively z•i (c)) labels
equal to c into the i-th diagonal. We will now study for each insertion the numbers of ways it may be
executed, and the contribution to the dinv each of these ways engenders.

We made figures illustrating the construction of some of the paths with diagonal word 44 223
•
011
•
2 and

shift 1. We included them in Appendix A.
Dyck paths. First consider i = s. Right before the (s, c)-insertion, there are

∑
d>c zs(d) labels in the

0-th diagonal. If c 6= 0 the zi(c) labels may be inserted anywhere between these
∑
d>c zs(d) = ws,s(c)− 1

labels. If c = 0, since the leftmost label in the 0-th diagonal may never be 0, the c’s may be inserted
anywhere between the remaining

∑
d>c zs(d) − 1 = ws,s(0) − 1 labels. In both cases, any time one of the

inserted c’s precedes one of the d’s with d > c, a unit of primary dinv is created. Thus the dinv of all
possible insertions is q-counted by

[ws,s(c)+zi(c)−1
zi(c)

]
q
. See Figure 8 in Appendix A .

For i > s, consider the path right before the (i, c)-insertion. We identify two kinds of insertion spots:

11



1. a smaller label in the (i− s− 1)-th diagonal, of which there are
∑
d<c zi−1(d);

2. a label in the (i− s)-th diagonal (which must be bigger than c because of the insertion order), of which
there are

∑
d>c zi(d).

Thus, the total number of insertion spots comes to wi,s(c). Any (i, c)-insertion corresponds uniquely to an
interlacing of the wi,s(c)− 1 insertion spots and zi(c) c’s: indeed

– the first occurrence of c in the i-th diagonal must be preceded by an insertion spot;
– there is a unique way of inserting a string of consecutive c’s right after any insertion spot. Say we want

to insert k consecutive c’s. Shift the labels following the insertion spot k squares to the north-east. Then
insert the first of the string of c’s into the square on top of an insertion spot of the first kind or in the
square north-east of an insertion spot of the second kind;

– between two strings of consecutive c’s there must be an insertion spot.

Any time an occurrence of c precedes an insertion spot of the first (respectively second) kind, a unit of
secondary (respectively primary) dinv is created. So the dinv of all possible insertions is q-counted by[ws(c)+zi(c)−1

zi(c)

]
q
. See Figure 9 in Appendix A .

Square paths. For the (i, c)-insertion with i < s the insertions spots are

1. bigger labels in the (i− s+ 1)-th diagonal, of which there are
∑
d>c zi+1(d);

2. labels in the (i − s)-th diagonal (which are smaller than c due to the insertion order), of which there
are

∑
d<c zi(d).

Thus there are wi,s(c) insertion spots. We have that

– the last occurrence of c must be followed by an insertion spot;
– there is an unique way of inserting a string of consecutive c’s right before any insertion spot. Say we

want to insert k consecutive c’s. Shift the insertion spot and the labels following it k squares to the
north-east. Insert the last of the string of c’s in the square below an insertion spot of the first kind or
in the square south-west of the insertion spot of the second kind;

– between two strings of consecutive c’s there must be an insertion spot.

So the (i, c)-insertion corresponds uniquely to an interlacing of the zi(c) c’s and the wi,s(c) − 1 insertion
spots. An insertion spot of the first (respectively second) creates secondary (respectively primary) dinv
with all following c’s. Furthermore, any non-zero label that gets inserted under the main diagonal creates
a unit of bonus dinv. Thus the dinv of all possible insertions is q-counted by q(1−δc,0)zi(c)

[ws(c)+zi(c)−1
zi(c)

]
q
.

See Figure 10.
Decorations. Now we treat (i, c)•-insertions. Define the dinv markers of such an insertion to be the∑
d<c zi(d) non-decorated labels smaller that c in the (i−s)-th diagonal and the

∑
d>c zi+1(d) non-decorated

labels bigger than c in the the (i− s+1)-th diagonal. These dinv markers are exactly the labels with which
a decorated c inserted to its right would create primary or secondary dinv.

First consider i ≥ s. The number of dinv markers equals w•i,s(c). We claim that (i, c)•-insertions corre-
spond bijectively to an interlacing of the z•i (c) inserted c’s and w•i,s(c) dinv markers, starting with a dinv
marker and without two consecutive c’s. We show that this correspondence is a well defined and bijective.

Well defined. We have to show that for any (i, c)•-insertion, the corresponding interlacing has no two
consecutive c’s and starts with a dinv marker. In the proof of Proposition 1, it is argued that a decorated
valley at height ≥ 0 is alway preceded by a label with which it creates primary or secondary dinv, i.e. a
dinv marker. Next, we need to show that there may never be two consecutive c’s in the interlacing, i.e. that
there is always a dinv marker between two inserted c’s. If the step labelled by an inserted c is followed by
a vertical step, its label must be bigger that c and so it is a dinv marker. If it is followed by a horizontal
step, it might be followed by a string of decorated labels at the same height: B1, . . . , Bl. We must have
c < B1 < · · · < Bl since the valleys are contractible. If the step labelled Bl is followed by a vertical step,
its label must be bigger than Bl and so a dinv marker. If the step labelled Bl is followed by a horizontal
step the step after this horizontal step cannot be a decorated valley labelled c (not contractible) so it must
either be a vertical, non-decorated step, or another horizontal step. In the latter case, the next label at
height i− s is a rise and so it is not decorated. Thus, there is a non-decorated label at height i− s between
our inserted decorated c and the next one. Again, we may use the arguments in the proof of Proposition 1
to conclude that there must be an dinv marker before the next occurrence of an inserted decorated c.

Injectivity. Suppose that there are two different insertions with the same interlacing of dinv markers
and decorated inserted c’s. This implies that between two (or after all) dinv markers there are two different
ways to insert a decorated c. Combining these two ways, one would obtain a path with two inserted c’s
that are not separated by a dinv marker, in contradiction to what is shown in the previous paragraph.
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Surjectivity. We must show that it is always possible to insert a decorated c between two (or after all)
dinv markers. We describe an insertion procedure for all possibilities.

S

B

S

c

B

→ •

(a)

S

S̃

B

S

S̃

c

B

→
•

(b)

p

S

S̃

S

S̃

c

→
•

(c)

S → S

c•

(d)

B

B̃ →

B

B̃
• c

(e)

B

→
B

• c

(f)

Fig. 5: Surjectivity for i ≥ s.

First consider a dinv marker of the first kind, i.e. a label S at height (i− s) smaller than c.

– If the dinv marker is followed by a vertical step whose label B is bigger than c, then insert the decorated
label c directly north-east of S, right under B. See Figure 5a.

– Suppose that the dinv marker is followed by a vertical step whose label S̃ is smaller than c, and before
the path crosses the (i− s+ 1)-th diagonal horizontally1there is dinv marker of the second kind, i.e. a
label B bigger than c at height i− s+1. Insert the decorated c such that it lies right below this B. See
Figure 5b.

– Suppose that the dinv marker is followed by a vertical step whose label S̃ is smaller than c, and there is
no dinv marker of the second kind between S̃ and the point p where the path crosses the (i− s+ 1)-th
diagonal horizontally. At p, insert a horizontal step followed by a decorated vertical step labelled c. See
Figure 5c.

– Suppose that the dinv marker is followed by a horizontal step. Then insert the decorated label c in the
square north-east of S. See Figure 5d.

Next, consider a dinv marker of the second kind, i.e. a label B at height (i − s + 1), bigger than c. Since
i ≥ s, we know the path will cross the (i− s+ 1)-th diagonal horizontally after the dinv marker.

– Suppose that before the path crosses the (i−s+1)-th diagonal horizontally there is a second dinv marker
of the second kind labelled B̃. Insert the decorated c such that it lies right below B̃. See Figure 5e.

– Suppose that there is no dinv marker of the second kind between B and the point p where the path
crosses the (i − s + 1)-th diagonal horizontally. At p, insert a horizontal step followed by a decorated
vertical step labelled c. See Figure 5f.

This completes the list of possibilities and thus the the argument for the bijectivity of the correspondence
between (i, c)•-insertions with i ≥ s and interlacings of the z•i (c) inserted c’s and w•i,s(c) dinv markers,
starting with a dinv marker and without two consecutive c’s. Each time a dinv marker precedes an inserted

1 If the step labelled S is followed by another vertical step, the path crosses the (i− s+ 1)-th diagonal vertically. Thus,
since i ≥ s, the path will cross the same diagonal horizontally after the vertical crossing.
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c a unit of dinv is created. Consider each of the z•i (c) inserted c’s as part of a block with the dinv marker
that precedes it. There is a unit of dinv for each block (z•i (c) units), a unit of dinv for each pair of blocks
since the dinv marker of the first block creates dinv with the c of the second block (

(
z•i (c)

2

)
units), and a

unit of dinv each time one of the w•i,s(c) − z•i (c) dinv markers that are not part of a block precedes an
inserted c (q-counted by

[w•i,s(c)
z•i (c)

]
q
). Lastly, all inserted decorated valleys contribute −1 to the dinv count

(−z•i (c) in total). So the total contribution to the dinv by this insertion is q-counted by

qz
•
i (c)q(

z•i (c)

2 )q−z
•
i (c)

[
w•i,s(c)

z•i (c)

]
q

= q(
z•i (c)

2 )

[
w•i,s(c)

z•i (c)

]
q

.

Now suppose i < s. Using the same techniques as for the previous case, we will show that (i, c)•-
insertions correspond bijectively to an interlacing of w•i,s(c) dinv markers and the z•i (c) inserted c’s, ending
with a dinv marker, and without two consecutive c’s. For i < s− 1 or c 6= 0 these are all the dinv markers,
for i = s− 1 and c = 0, w•i,s(c) equals the number of dinv markers minus 1.

Well defined. There are three things to show. First, that the interlacing corresponding to an insertion
has no two consecutive c’s. Exactly the same argument as for i ≥ s applies. Second, we show that the
interlacing corresponding to any insertion ends with a dinv marker. Consider c an inserted label at height
i− s. If the step c labels is followed by a vertical step, this must be labelled with a label bigger that c and
so this is a dinv marker. Suppose that the inserted c is followed by a horizontal step.

Since the path must end east, there must be two consecutive vertical steps, at height i− s and i− s+1,
after c. If the label of the second of these steps is bigger than c it is a dinv marker. If not, the label S1 of
the first vertical step must be smaller than c, so if it is not decorated, it is a dinv marker. If it is decorated
it may be preceded by a string of decorated valleys at height i − s, labelled S2, . . . , Sl with S1 > · · · > Sl
(by contractibility). The step labelled Sl is preceded by a horizontal step; if this step is preceded by a
non-decorated vertical step its label must be smaller than c and is thus a dinv marker. If it is preceded by
a second horizontal step we may deduce the existence of two consecutive vertical steps (at height i− s and
i − s + 1) between c and Sl. We have arrived at the same situation as at the beginning of the paragraph.
Since the path is finite this loop must terminate and a dinv marker exists after c.

Finally, for i = s−1 and c = 0, w•s−1,s(0) is equal to the number of dinv markers minus 1. We have that
the interlacing between inserted c’s and dinv marker must start with a dinv marker. Indeed, by definition
the path may not start with a decorated 0 at height −1 so the first decorated 0 at height −1 must be
preceded by two horizontal step and thus a positive label at height 0. Therefore, disregarding this first dinv
marker of the interlacing, an (s − 1, 0)•-insertion corresponds to an interlacing of the z•s−1(0) inserted 0’s
and w•s−1,s(0) remaining dinv markers.

Remark 4 Keep in mind that this disregarded dinv marker creates z•s−1(0) units of dinv with all the 0’s
that follow it in the interlacing.

Injectivity. The argument is the same as for i ≥ s.
Surjectivity. The fact that there must be a dinv marker to the right of all inserted c’s ensures that the

insertion algorithms for i ≥ s also apply here. So the only thing left to show is that, if i 6= s−1 or c 6= 0, we
may always insert a decorated c to the left of all dinv markers. We consider the first label at height i− s,
denote it F and consider the following cases.

– Suppose that F is a dinv marker or appears before all dinv markers, and is preceded by a horizontal
step. Then this step must be preceded by another horizontal step, else the step labelled F would not be
the first at its height. Insert a horizontal step followed by a decorated vertical step labelled c between
these two horizontal steps. If F is decorated, the insertion order ensures that c < F and so F labels a
contractible valley. See Figure 6a.

– Suppose F is a dinv marker or appears before all dinv markers and is preceded by a vertical step.
Since the path starts at (0, 0) this implies that before F there must be point were the path crosses the
(i− s)-th diagonal horizontally. The two consecutive horizontal steps of this crossing must be preceded
by a third horizontal step, since if there was a vertical step preceding them, F would not be the first
label at its height. Insert a horizontal step followed by a decorated vertical step labelled c after the first
(from the left) of these three horizontal steps. See Figure 6b.

– Suppose F is preceded by a dinv marker, a label B > c at height i − s + 1. Then the step labelled B
must be preceded by a horizontal step, for if it were preceded by a vertical one, F would not be the
first label at its height. Insert a horizontal step followed by a decorated vertical step labelled c after
this horizontal step, underneath B. See Figure 6c.
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F c

F

→ •

(a)

→
F

c

F

•

(b)

B
→ B

• c

(c)

Fig. 6: Surjectivity for i < s.

So we proved the bijective correspondence between (i, c)•-insertions and interlacings of the z•i (c) inserted
c’s and w•i,s(c) dinv markers, ending with a dinv marker and without two consecutive c’s. By definition
each time a dinv marker precedes an inserted c, a unit of dinv is created.

Consider each of the z•i (c) inserted c’s as part of a block with the dinv marker that follows it. As for the
previous case there is a unit of dinv for each pair of blocks since the dinv marker of the first block creates
dinv with the c of the second block (

(
z•i (c)

2

)
units), and a unit of dinv each time one of the w•i,s(c)− z•i (c)

dinv markers that are not part of a block precedes an inserted c (q-counted by
[w•i,s(c)
z•i (c)

]
q
). Also all inserted

decorated valleys contribute −1 to the dinv count (−z•i (c) in total). Furthermore, for c 6= 0 and i < s
any (i, c)•-insertion creates z•i (c) units of bonus dinv. Lastly, we must not forget the z•s−1(0) units of
primary dinv created with the first dinv marker and the 0’s at height −1 (see Remark 4). It follows that
the contribution to the dinv for all possible (i, c)•-insertions is q-counted by

qz
•
s−1(0)δi,s−1δc,0q(1−δc,0)z

•
i (c)q−z

•
i (c)q(

z•i (c)

2 )

[
w•i,s
z•i (c)

]
q

See Figures 11 and 12in Appendix A.
Taking the product over all possible i and c and using∑

i<s

∑
c∈N

(
(1− δc,0)zi(c) + z•s−1(0)δi,s−1δc,0 + (1− δc,0)z•i (c)− z•i (c)

)
=
∑
i<s

∑
c>0

(
zi(c) + z•i (c)− z•i (c)

)
+
∑
i<s−1

(−z•i (0)) + z•s−1(0)− z•s−1(0)

=
∑
c>0

∑
i<s

zi(c) +
∑
i<s−1

(−z•i (0)) = b(z, s).

we finally obtain the announced formula.

6 The valley Delta implies the valley square

Let us define
LSQq,t;x(z, s) :=

∑
π∈LSQ(m,n)•k

shift(π)=s
dw(π)=z

qdinv(π)tarea(π)xπ,

where z is the diagonal word of some decorated square path in LSQ(m,n)•k. Let ri :=
∑
c>0 zi(c). We want

to relate LSQq,t;x(z, s) and LSQq,t;x(z, s
′). Let us state some lemmas.

Lemma 1 For z diagonal word of a path in LSQ′(m,n)•k with `+ 1 runs, and 0 < s ≤ `, we have

∏
c≥0

[ws,s(c)+zs(c)−1
zs(c)

]
q[ws−1,s−1(c)+zs−1(c)−1

zs−1(c)

]
q

=
[rs]q

[rs−1]q
· [rs + zs(0)− 1]q!

[rs−1 + zs−1(0)− 1]q!
·
∏
c≥0

[zs−1(c)]q!

[zs(c)]q!
.
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Proof Recall that

ws,s(c) = 1− δc,0 +
∑
a>c

zs(a), ws−1,s−1(c) = 1− δc,0 +
∑
a>c

zs−1(a).

We have∏
c≥0

[ws,s(c)+zs(c)−1
zs(c)

]
q[ws−1,s−1(c)+zs−1(c)−1

zs−1(c)

]
q

=
∏
c≥0

[ws,s(c) + zs(c)− 1]q!

[ws,s(c)− 1]q!

[ws−1,s−1(c)− 1]q!

[ws−1,s−1(c) + zs−1(c)− 1]q!

[zs−1(c)]q!

[zs(c)]q!

=
∏
c≥0

[
∑
a≥c zs(a)− δc,0]q!

[
∑
a>c zs(a)− δc,0]q!

[
∑
a>c zs−1(a)− δc,0]q!

[
∑
a≥c zs−1(a)− δc,0]q!

[zs−1(c)]q!

[zs(c)]q!

=
[
∑
a≥0 zs(a)− 1]q!

[
∑
a>0 zs(a)− 1]q!

[
∑
a>0 zs−1(a)− 1]q!

[
∑
a≥0 zs−1(a)− 1]q!

·
∏
c>0

[
∑
a≥c zs(a)]q!

[
∑
a>c zs(a)]q!

[
∑
a>c zs−1(a)]q!

[
∑
a≥c zs−1(a)]q!

·
∏
c≥0

[zs−1(c)]q!

[zs(c)]q!

=
[rs + zs(0)− 1]q![rs−1 − 1]q!

[rs − 1]q![rs−1 + zs−1(0)− 1]q!

[
∑
a>0 zs(a)]q!

[
∑
a>0 zs−1(a)]q!

·
∏
c>0

[
∑
a>c zs(a)]q!

[
∑
a>c zs(a)]q!

[
∑
a>c zs−1(a)]q!

[
∑
a>c zs−1(a)]q!

·
∏
c≥0

[zs−1(c)]q!

[zs(c)]q!

=
[rs + zs(0)− 1]q![rs−1 − 1]q!

[rs − 1]q![rs−1 + zs−1(0)− 1]q!
· [rs]q!

[rs−1]q!
·
∏
c≥0

[zs−1(c)]q!

[zs(c)]q!

=
[rs]q

[rs−1]q
· [rs + zs(0)− 1]q!

[rs−1 + zs−1(0)− 1]q!
·
∏
c≥0

[zs−1(c)]q!

[zs(c)]q!

and it is not hard to check that all the denominators are non-zero as they are either q-analogues of positive
integers or q-factorials of non-negative integers. This completes the proof.

Lemma 2 For z diagonal word of a path in LSQ′(m,n)•k with `+ 1 runs, and 0 < s ≤ `, we have

∏
c≥0

[ws−1,s(c)+zs−1(c)−1
zs−1(c)

]
q[ws,s−1(c)+zs(c)−1

zs(c)

]
q

=
[rs−1 + zs−1(0)− 1]q!

[rs + zs(0)− 1]q!
·
∏
c≥0

[zs(c)]q!

[zs−1(c)]q!
.

Proof Recall that

ws−1,s(c) = ws,s−1(c) =
∑
a>c

zs(a) +
∑
a<c

zs−1(a).

Let m = max{c ≥ 0 | zs(c) > 0 or zs−1(c) > 0}. We have

∏
c≥0

[ws−1,s(c)+zs−1(c)−1
zs−1(c)

]
q[ws,s−1(c)+zs(c)−1

zs(c)

]
q

=
∏
c≥0

[ws−1,s(c) + zs−1(c)− 1]q!

[ws−1,s(c)− 1]q!

[ws,s−1(c)− 1]q!

[ws,s−1(c) + zs(c)− 1]q!

[zs(c)]q!

[zs−1(c)]q!

=
∏
c≥0

[ws−1,s(c) + zs−1(c)− 1]q!

[ws,s−1(c) + zs(c)− 1]q!

[zs(c)]q!

[zs−1(c)]q!

=
∏
c≥0

[
∑
a>c zs(a) +

∑
a≤c zs−1(a)− 1]q!

[
∑
a≥c zs(a) +

∑
a<c zs−1(a)− 1]q!

·
∏
c≥0

[zs(c)]q!

[zs−1(c)]q!

=

∏m
c=0[

∑
a>c zs(a) +

∑
a≤c zs−1(a)− 1]q!∏m

c=0[
∑
a>c−1 zs(a) +

∑
a≤c−1 zs−1(a)− 1]q!

·
∏
c≥0

[zs(c)]q!

[zs−1(c)]q!

=

∏m
c=0[

∑
a>c zs(a) +

∑
a≤c zs−1(a)− 1]q!∏m−1

c=−1[
∑
a>c zs(a) +

∑
a≤c zs−1(a)− 1]q!

·
∏
c≥0

[zs(c)]q!

[zs−1(c)]q!

=
[
∑
a>m zs(a) +

∑
a≤m zs−1(a)− 1]q!

[
∑
a>−1 zs(a) +

∑
a≤−1 zs−1(a)− 1]q!

·
∏
c≥0

[zs(c)]q!

[zs−1(c)]q!

=
[
∑
a≤m zs−1(a)− 1]q!

[
∑
a≥0 zs(a)− 1]q!

·
∏
c≥0

[zs(c)]q!

[zs−1(c)]q!

=
[rs−1 + zs−1(0)− 1]q!

[rs + zs(0)− 1]q!
·
m∏
c=0

[zs(c)]q!

[zs−1(c)]q!
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and once again it is not hard to check that all the denominators are non-zero as they are q-factorials of
non-negative integers. This completes the proof.

Lemma 3 For z diagonal word of a path in LSQ′(m,n)•k with `+ 1 runs, and 0 ≤ s′ < s ≤ `, we have

∏̀
i=0

∏
c≥0

[
wi,s(c) + zi(c)− 1

zi(c)

]
q

=
[rs]q
[rs′ ]q

·
∏̀
i=0

∏
c≥0

[
wi,s′(c) + zi(c)− 1

zi(c)

]
q

.

Proof Let us preliminarily prove the result for s′ = s − 1. By definition we have that wi,s(c) = wi,s−1(c)
for i 6∈ {s− 1, s}, so it is enough to show that

∏
c≥0

[
ws−1,s(c) + zs−1(c)− 1

zs−1(c)

]
q

[
ws,s(c) + zs(c)− 1

zs(c)

]
q

=
[rs]q

[rs−1]q
·
∏
c≥0

[
ws−1,s−1(c) + zs−1(c)− 1

zs−1(c)

]
q

[
ws,s−1(c) + zs(c)− 1

zs(c)

]
q

. (1)

By Lemma 1 we have

∏
c≥0

[
ws,s(c) + zs(c)− 1

zs(c)

]
q

=
[rs]q

[rs−1]q
· [rs + zs(0)− 1]q!

[rs−1 + zs−1(0)− 1]q!
·
∏
c≥0

[zs−1(c)]q!

[zs(c)]q!
·

[
ws−1,s−1(c) + zs−1(c)− 1

zs−1(c)

]
q

and by Lemma 2 we have

∏
c≥0

[
ws−1,s(c) + zs−1(c)− 1

zs−1(c)

]
q

=
[rs−1 + zs−1(0)− 1]q!

[rs + zs(0)− 1]q!
·
∏
c≥0

[zs(c)]q!

[zs−1(c)]q!
·

[
ws,s−1(c) + zs(c)− 1

zs(c)

]
q

so, taking the product of the two expressions, after the obvious simplifications the statement for s′ = s− 1
follows.

Now, applying Equation 1 repeatedly, we get

∏̀
i=0

∏
c≥0

[
wi,s(c) + zi(c)− 1

zi(c)

]
q

=
[rs]q

[rs−1]q
·
∏̀
i=0

∏
c≥0

[
wi,s−1(c) + zi(c)− 1

zi(c)

]
q

=
[rs]q

[rs−1]q

[rs−1]q
[rs−2]q

·
∏̀
i=0

∏
c≥0

[
wi,s−2(c) + zi(c)− 1

zi(c)

]
q

= . . .

=
[rs]q

[rs−1]q
· · · [rs

′+1]q
[rs′ ]q

·
∏̀
i=0

∏
c≥0

[
wi,s′(c) + zi(c)− 1

zi(c)

]
q

=
[rs]q
[rs′ ]q

·
∏̀
i=0

∏
c≥0

[
wi,s′(c) + zi(c)− 1

zi(c)

]
q

as desired.

Lemma 4 For z diagonal word of a path in LSQ′(m,n)•k with ` + 1 runs, and 0 ≤ s′ < s ≤ `, if
rs − z•s−1(0) > 0 and rs′ − z•s′−1(0) > 0, we have

[rs]q
[rs − z•s−1(0)]q

∏̀
i=0

∏
c≥0

[
w•i,s(c)

z•i (c)

]
q

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

∏̀
i=0

∏
c≥0

[
w•i,s′(c)

z•i (c)

]
q

.

Proof Let us recall that
w•i,s(c) :=

∑
a<c

zi(a) +
∑
a>c

zi+1(a)− δc,0δi,s−1.
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For c 6= 0, w•i,s(c) does not depend on s, and w•i,s(0) = w•i,s′(0) ≥ 0 for i 6∈ {s − 1, s′ − 1}, so it is enough
to show that

[rs]q
[rs − z•s−1(0)]q

[
w•s−1,s(0)

z•s−1(0)

]
q

[
w•s′−1,s(0)

z•s′−1(0)

]
q

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

[
w•s−1,s′(0)

z•s−1(0)

]
q

[
w•s′−1,s′(0)

z•s′−1(0)

]
q

.

We have

w•s−1,s(0) = rs − 1 w•s′−1,s(0) = rs′ w•s−1,s′(0) = rs w•s′−1,s′(0) = rs′ − 1

so

[rs]q
[rs − z•s−1(0)]q

[
w•s−1,s(0)

z•s−1(0)

]
q

[
w•s′−1,s(0)

z•s′−1(0)

]
q

=
[rs]q

[rs − z•s−1(0)]q

[
rs − 1

z•s−1(0)

]
q

[
rs′

z•s′−1(0)

]
q

=
[rs]q

[rs − z•s−1(0)]q

[rs − 1]q!

[rs − z•s−1(0)− 1]q![z•s−1(0)]q!

[rs′ ]q!

[rs′ − z•s′−1(0)]q![z
•
s′−1(0)]q!

=
[rs]q!

[rs − z•s−1(0)]q![z
•
s−1(0)]q!

[rs′ ]q!

[rs′ − z•s′−1(0)]q![z
•
s′−1(0)]q!

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

[rs]q!

[rs − z•s−1(0)]q![z
•
s−1(0)]q!

[rs′ − 1]q!

[rs′ − z•s′−1(0)− 1]q![z•s′−1(0)]q!

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

[
rs

z•s−1(0)

]
q

[
rs′ − 1

z•s′−1(0)

]
q

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

[
w•s−1,s′(0)

z•s−1(0)

]
q

[
w•s′−1,s′(0)

z•s′−1(0)

]
q

as desired.

Theorem 6 Let z be the diagonal word of a path in LSQ′(m,n)•k with `+1 runs, and 0 ≤ s′ < s ≤ `. We
have

[rs′ − z•s′−1(0)]q · LSQq,t;x(z, s) = q
∑s−1

i=s′ (ri−z
•
i−1(0))[rs − z•s−1(0)]q · LSQq,t;x(z, s′).

Proof First of all notice that ri − z•i−1(0) ≥ 0, and if the path has shift s, then rs − z•s−1(0) > 0. In fact,
between any two decorated zero valleys in the (i− s− 1)-th diagonal there must be a rise (that contributes
to ri). If i ≤ s there must be a rise after the last such valley. If i ≥ s there must be a non-decorated
positive label in the (i−s)-th diagonal before the first such valley (as it must be preceded by two horizontal
steps). For i = s both hold, and this gives the strict inequality. Because of this, either rs − z•s−1(0) > 0 or
LSQ(z, s) = ∅, in which case the equality 0 = 0 trivially holds. The same argument applies to s′, so from
now on, we assume rs − z•s−1(0) 6= 0 and rs′ − z•s′−1(0) 6= 0.

Now, via a simple calculation we get b(z, s)− b(z, s′) =
∑s−1
i=s′(ri− z

•
i−1(0)). Moreover, by Lemma 3 we

have ∏̀
i=0

∏
c≥0

[
wi,s(c) + zi(c)− 1

zi(c)

]
q

=
[rs]q
[rs′ ]q

·
∏̀
i=0

∏
c≥0

[
wi,s′(c) + zi(c)− 1

zi(c)

]
q

and by Lemma 4 we have

[rs]q
[rs − z•s−1(0)]q

∏̀
i=0

∏
c≥0

[
w•i,s(c)

z•i (c)

]
q

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

∏̀
i=0

∏
c≥0

[
w•i,s′(c)

z•i (c)

]
q

.

By combining the two with Theorem 5, we get

LSQq,t;x(z, s) = q
∑s−1

i=s′ (ri−z
•
i−1(0))

[rs − z•s−1(0)]q
[rs′ − z•s′−1(0)]q

· LSQq,t;x(z, s′).

which is exactly what we wanted to show.
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Corollary 2 If r0 6= 0, then

LSQq,t;x(z, s) = qb(z,s)
[rs − z•s−1(0)]q

[r0]q
LDq,t;x(z),

where we used the obvious notation LDq,t;x(z) = LSQq,t;x(z, 0).

Proof It follows immediately by applying Theorem 6 with s′ = 0 (notice that z•−1(0) = 0).

Corollary 3

LSQ′q,t;x(m,n\r)•k =
[n− k]q
[r]q

LDq,t;x(m,n\r)•k

Proof Given z diagonal word of a path in LSQ′(m,n)•k with `+ 1 runs, we have

∑̀
s=0

LSQq,t;x(z, s) =
∑̀
s=0

qb(z,s)
[rs − z•s−1(0)]q

[r0]q
LDq,t;x(z)

=

∑`
s=0 q

b(z,s)[rs − z•s−1(0)]q

r0]q
LDq,t;x(z)

=
[
∑`
s=0(rs − z

•
s−1(0))]q

[r0]q
LDq,t;x(z)

and now taking the sum over all such z with r0 = r, since
∑`
s=0 rs = n − k +

∑`
s=0 z

•
s−1(0) (the total

number of non-decorated positive labels), the thesis follows immediately.

Theorem 7 (Conditional modified Delta square conjecture, valley version) If Conjecture 7 holds,
then so does Conjecture 9. As a special case, if Conjecture 6 holds, then so does Conjecture 8.

Proof We recall the statement of Conjecture 7, which is

∆hmΘek∇En−k,r =
∑

π∈LD(m,n\r)•k
qdinv(π)tarea(π)xπ.

Applying Corollary 3, we have

[n− k]q
[r]q

∆hmΘek∇En−k,r =
∑

π∈LSQ′(m,n\r)•k
qdinv(π)tarea(π)xπ.

Taking the sum over r and using Proposition 2, we get

∆hmΘek∇ω(pn−k) =
∑

π∈LSQ′(m,n)•k
qdinv(π)tarea(π)xπ,

as desired.

By Remark 2, the case k = 0 of Conjecture 7 holds. So by Theorem 7, the case k = 0 of Conjecture 9
holds as well.

Corollary 4 (Generalised square theorem)

∆hm∇ω(pn) =
∑

π∈LSQ(m,n)

qdinv(π)tarea(π)xπ.
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Fig. 7: “Pushing” of ∞’s.

7 Concluding remarks

As we mentioned before, the slightly contrived conditions on the positions of the steps labelled with zeros
can be reformulated quite naturally by considering a step labelled 0 as the “pushing” of a step labelled ∞.

Performing this manoeuvre does not change the dinv (if we define that the∞’s under the main diagonal
do not contribute to the bonus dinv and that there are no ∞’s on the base diagonal). The area changes by
a constant factor equal to the number of zeros.

Several open problems arise from our discussion. There is no interpretation of the symmetric function
∆hmΘek∇ω(pn−k) in terms of rise-decorated square paths, for which also the schedule formula is lacking.
This is one of the very few instances where the valley version seems to be easier to treat than the rise
version. Understanding the rise version better might lead to a unified valley-rise conjecture interpreting
ΘejΘek∇en−k−j .

Lastly, it would be nice to show that the valley Delta conjecture implies the generalised valley Delta
conjecture. Given that, our results would be conditional only on the valley Delta conjecture. There might
be a way to prove this using the “pushing” manoeuvre described above to interpret the behaviour of the h⊥j
operator. We have some symmetric function identities suggesting that this avenue might be fruitful, and
some of these conjectural identities are strongly suggested by certain relations among the combinatorial
objects.
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A Figures for schedule numbers

This appendix contains figures illustrating the construction of some of the square paths of LSQ(1, 8)•2 with diagonal word

44 223
•
011
•
2 and shift 1. They serve as visuals for the proof of Theorem 5.
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Fig. 8: (1, 3) and (1, 2)-insertion
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Fig. 9: (2, 4)-insertion
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Fig. 10: (0, 1)-insertion
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Fig. 11: (0, 2)•-insertion

22



2

1

1

3

2

4

2

4

•

2

1

1

3

0

2

4

2

4

•

•

2

1

1

3

2

4

0

2

4

•

•

Fig. 12: (0, 0)•-insertion

23



References

[1] François Bergeron and Adriano M. Garsia, Science fiction and Macdonald’s polynomials, Algebraic methods and
q-special functions (montréal, QC, 1996), 1999, pp. 1–52. MR1726826

[2] François Bergeron, Adriano M. Garsia, Mark Haiman, and Glenn Tesler, Identities and positivity conjectures for some
remarkable operators in the theory of symmetric functions, Methods Appl. Anal. 6 (1999), no. 3, 363–420. Dedicated
to Richard A. Askey on the occasion of his 65th birthday, Part III. MR1803316

[3] Mahir Can and Nicholas Loehr, A proof of the q, t-square conjecture, J. Combin. Theory Ser. A 113 (2006), no. 7,
1419–1434. MR2259069

[4] Erik Carlsson and Anton Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018), no. 3, 661–697.
MR3787405

[5] Michele D’Adderio, Alessandro Iraci, and Anna Vanden Wyngaerd, Decorated Dyck paths, polyominoes, and the Delta
conjecture, Mem. Amer. Math. Soc. (2018).

[6] , The Delta Square Conjecture, International Mathematics Research Notices (201903), available at rnz057.pdf.
[7] , The generalized Delta conjecture at t=0, arXiv e-prints (2019Jan), arXiv:1901.02788, available at 1901.02788.
[8] , The Schröder case of the generalized Delta conjecture, European Journal of Combinatorics 81 (2019), 58 –83.
[9] , Theta operators, refined Delta conjectures, and coinvariants, arXiv e-prints (2019Jun), available at 1906.

02623.
[10] Adriano Garsia, Jim Haglund, Jeffrey B. Remmel, and Meesue Yoo, A Proof of the Delta Conjecture When q = 0,

Annals of Combinatorics 23 (2019Jun), no. 2, 317–333.
[11] James Haglund, The q,t-Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41,

American Mathematical Society, Providence, RI, 2008. With an appendix on the combinatorics of Macdonald polyno-
mials. MR2371044

[12] James Haglund, Mark Haiman, Nicholas Loehr, Jeffrey B. Remmel, and Anatoly Ulyanov, A combinatorial formula
for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195–232. MR2115257

[13] James Haglund, Jeffrey B. Remmel, and Andrew T. Wilson, The Delta Conjecture, Trans. Amer. Math. Soc. 370
(2018), no. 6, 4029–4057. MR3811519

[14] James Haglund, Brendon Rhoades, and Mark Shimozono, Ordered set partitions, generalized coinvariant algebras, and
the Delta Conjecture, Adv. Math. 329 (2018), 851–915. MR3783430

[15] James Haglund and Emily Sergel, Schedules and the Delta Conjecture, arXiv e-prints (2019Aug), available at 1908.
04732.

[16] Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001),
no. 4, 941–1006. MR1839919

[17] , Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149
(2002), no. 2, 371–407. MR1918676

[18] Nicholas A. Loehr and Gregory S. Warrington, Square q, t-lattice paths and ∇(pn), Trans. Amer. Math. Soc. 359
(2007), no. 2, 649–669. MR2255191

[19] Ian G. Macdonald, Symmetric functions and Hall polynomials, Second, Oxford Mathematical Monographs, The Claren-
don Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
MR1354144

[20] Dun Qiu and Andrew Timothy Wilson, The valley version of the Extended Delta Conjecture, 2019.
[21] Jeffrey B. Remmel and Andrew T. Wilson, An extension of MacMahon’s equidistribution theorem to ordered set

partitions, J. Combin. Theory Ser. A 134 (2015), 242–277. MR3345306
[22] Brendon Rhoades, Ordered set partition statistics and the Delta Conjecture, J. Combin. Theory Ser. A 154 (2018),

172–217. MR3718065
[23] Emily Sergel, A proof of the Square Paths Conjecture, J. Combin. Theory Ser. A 152 (2017), 363–379. MR3682738
[24] Andrew T. Wilson, An extension of MacMahon’s equidistribution theorem to ordered multiset partitions, Electron. J.

Combin. 23 (2016), no. 1, Paper 1.5, 21. MR3484710
[25] Mike Zabrocki, A proof of the 4-variable Catalan polynomial of the Delta conjecture, ArXiv e-prints (September 2016),

available at 1609.03497.
[26] Mike Zabrocki, A module for the Delta conjecture, arXiv e-prints (2019Feb), arXiv:1902.08966, available at 1902.08966.

24

rnz057.pdf
1901.02788
1906.02623
1906.02623
1908.04732
1908.04732
1609.03497
1902.08966

	Introduction
	Combinatorial definitions
	Symmetric functions
	Delta conjectures
	Schedule numbers for repeated labels
	The valley Delta implies the valley square
	Concluding remarks
	Figures for schedule numbers

